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ever,  � -AR signaling pathways undergo a number of 
adaptive and potentially maladaptive regulatory changes 
as a consequence of heart failure  [1, 2] . This should not be 
surprising given that one of the best correlative makers 
for the degree and prognosis of chronic heart failure is 
plasma norepinephrine  [3] , an endogenous ligand for ad-
renergic receptors. 

  The human heart expresses two broad classes of ad-
renergic receptors, the  � -adrenergic and the  � -adrener-
gic families. Each of these families can be further subdi-
vided into subclasses, the  �  1 - and the  �  2 -AR family and 
the  � -AR family, with three well-defined subtypes. In 
this review, we will focus on the  � -AR family, its signal-
ing components in the context of cardiac function, and 
the therapeutic potential role of  � -AR blockade in affect-
ing the natural history of heart failure.

  Historical Perspective 

 John Newport Langley (1852–1925), a physiologist at 
Cambridge in the early 1900s, first proposed the chal-
lenging concept of specific receptors that bind drugs or 
transmitter substances onto the cell, thereby either ini-
tiating biological effects or inhibiting cellular functions 
within the cell itself  [4, 5] . Around the same time it was 
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 Abstract 

    �-Adrenergic receptors (�-AR) are central to the overall reg-
ulation of cardiac function. From the first proposed receptor/
transmitter concept to the latest clinical �-blocker trials 
�-AR have been shown to play an important role in cardiac 
disease and heart failure in particular. This study provides a 
historical perspective, reviews the latest discoveries and be-
liefs, and discusses the current clinical practices of �-AR and 
their modulation with their associated guanine-nucleotide 
regulatory protein/adenylylcyclasesignal transduction path-
ways.  Copyright © 2012 S. Karger AG, Basel 

 Introduction 

  � -Adrenergic receptors ( � -AR) and their associated 
guanine nucleotide regulatory protein (G protein)/adeny-
lyl cyclase (AC) signal transduction pathways are central 
to the overall regulation of cardiac function. In particu-
lar,  � -AR stimulation is a primary control point for mod-
ulation of heart rate and myocardial contractility. How-

 Received: April 13, 2012 
 Accepted: April 25, 2012 
 Published online: July 3, 2012 

 Edward M. Gilbert, MD
  Division of Cardiology 
 University of Utah 
 Salt Lake City, UT (USA) 
 Tel. +1 801 581 7715, E-Mail Edward.Gilbert   @   hsc.utah.edu 

 © 2012 S. Karger AG, Basel
0008–6312/12/1222–0104$38.00/0 

 Accessible online at:
www.karger.com/crd 

D
ow

nl
oa

de
d 

by
: 

19
8.

14
3.

38
.1

 -
 4

/1
8/

20
16

 1
2:

29
:1

5 
A

M

http://dx.doi.org/10.1159%2F000339271


 Beta-Adrenergic Receptors: Discovery to 
Application 

Cardiology 2012;122:104–112 105

postulated by Paul Ehrlich (1854–1915) that these recep-
tors were selective. Ehrlich determined the preferential 
distribution of lead and dyes in different body tissues 
and then modified his theory to correspond with the 
body’s immune response which later inspired his fa-
mous ‘side-chain theory’. Ehrlich received the Nobel 
Prize for Medicine in 1908  [6] . In 1897, John Jacob Abel 
(1857–1938), who founded and chaired the first depart-
ment of pharmacology in the USA at the University of 
Michigan and then went on to chair the pharmacology 
department at Johns Hopkins University, successfully 
isolated epinephrine. In 1933, W. B. Cannon, while 
studying the sympathetic nervous system in his ‘fight-
or-flight theory’, concluded that there were two chemi-
cal transmitters that he called sympathins; sympathin E 
for excitatory responses and sympathin I for inhibitory 
pathways  [7] . However, it was not until 1948, in his his-
torical manuscript published in the  American Journal of 
Physiology , where Raymond Ahlquist described the ac-
tions of adrenaline on two distinct receptors called al-
pha and beta and established the idea of a single sympa-
thetic mediator producing both excitatory and inhibi-
tory responses that the receptor theory was finally 

embraced fully by the scientific community  [8] . Natu-
rally, following the discovery of the beta receptors, the 
first  � -blocker, dichloroisoproterenol, was synthesized 
by Eli Lilly Laboratories in 1958  [9, 10] . Shortly thereaf-
ter, Sir James W. Black found the first clinical use of  � -
blockers for the management of angina pectoris with 
propranolol  [11] . His contribution was considered to be 
one of the most important to clinical medicine and as 
such he received the Nobel Prize for his work.  � -Block-
ers quickly gained popularity for their cardiac clinical 
uses with clinical trials studying the use of  � -blockers 
for angina pectoris, hypertension, arrhythmias and post 
myocardial infarct. For example, the Beta-Blocker Heart 
Attack Trial (BHAT) was a randomized trial showing 
the benefit of propranolol in patients with acute myocar-
dial infarcts  [12] . The first clinical trial proposing the 
use of  � -blockers for the treatment of heart failure was 
documented in 1975 in the  British Heart Journal  by F. 
Waagstein  [13] . Afterwards, randomized controlled tri-
als for the use of  � -blockers in the treatment of heart 
failure began in the 1980’s and gained clinical relevance 
in the 1990’s ( fig. 1 ).
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  Fig. 1.  Historical timeline of the discovery and characteristics to clinical applications of  � -ARs. Please see text 
for further descriptions of listed trials.  
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   � -AR Biology 

 To date, three subtypes of  � -ARs have been identified 
at a molecular level, the  �  1 -,  �  2 - and  �  3 -AR  [14–16] . The 
 �  3 -AR subtype has been associated primarily with meta-
bolic regulation; however, there is some indication that 
unlike the  �  1 - and  �  2 -AR subtypes, it may inhibit myo-
cardial contractility  [17] . A fourth  � -AR subtype has 
been proposed but will not be discussed within the con-
text of this review.

  The nonfailing human heart expresses a mixed popu-
lation of  � -ARs, with approximately 80% of the ex-
pressed receptors being of the  �  1 -AR subtype and ap-
proximately 20% of the  �  2 -AR subtype  [1, 18] . However, 
in the failing human heart, the  �  1 -AR undergoes sub-
type selective downregulation at both the levels of 
mRNA and protein such that the  �  1 -: �  2 -AR subtype 
proportions become approximately equal  [19] . Although 
there are some differences in the gene expression pat-
terns examined to date based on the etiology of heart 
failure ( table 1 ), overall, the extent of  �  1 -AR downregu-
lation correlates well with the severity of heart disease. 
The expression of myocardial  �  1 -ARs also correlates 
well with systemic or coronary sinus plasma norepi-
nephrine concentrations. Many of the changes to the  � -
AR pathways associated with heart failure are also pro-
duced by the normal process of aging. There is also a 
good correlation between  �  1 -AR density and age; the 
older the individual, the lower the  �  1 -AR density  [20] . 
Aging, like heart failure, does not appear to have a sig-
nificant effect on  �  2 -AR density.

  As stated above, the  �  2 -AR may be uncoupled from its 
signaling pathway but it is not downregulated in the fail-
ing human heart. There are a number of potential expla-
nations for this. First, the endogenous catecholamine, 
norepinephrine, is approximately 10–30-fold more selec-
tive for the  �  1 - than the  �  2 -AR. Second, the  �  1 -AR ap-
pears to be localized to the synaptic cleft, thus it is more 
than likely exposed to higher concentrations of norepi-
nephrine. Because of the relative preservation of  �  2 -AR 
expression in the failing human heart, it has been the fo-
cus of therapeutic interest both from the development of 
 �  2 -AR-selective pharmacological agents, both agonist 
and antagonist, and from a gene-therapy approach  [21]  of 
increased cardiac contractility. However, there is now 
substantial evidence to support the use of the  �  1 -AR-se-
lective antagonists such as metoprolol, as well as some 
nonselective  � -AR antagonists, in the treatment of chron-
ic congestive heart failure. These issues are discussed in 
detail below.

  In the human heart, the  �  1 - and  �  2 -ARs are coupled 
to the stimulatory G protein, Gs ( fig. 2 ). The presence of 
 � -AR agonist causes a conformational change in the re-
ceptor protein affecting the dissociation of the heterotri-
meric G protein into its subunit components, G � s and 
 �  � , both of which can act as signaling entities. A primary 
effect of the  � -AR is stimulation of adenylyl cyclases, 
multiple subtypes of which are expressed in human car-
diac tissues. Adenylyl cyclases catalyze the conversion of 
ATP to the second messenger, cAMP, which in turn binds 
to the regulatory subunits of protein kinase A (PK-A) 
causing the release of active catalytic PK-A subunits. 
PK-A phosphorylates serine and threonine residues on a 
number of proteins thereby affecting a spectrum of cel-
lular processes ranging from contractility to global gene 
expression patterns. Important PK-A targets that acutely 
modulate myocardial contractility are protein  � -ARs 
themselves, L-type Ca ++  channels, the sarcoplasmic re-
ticular Ca ++ /ATPase inhibitory protein, phospholamban 
and troponin I. 

  In addition to activating PK-A,  � -AR stimulation acti-
vates members of the G protein receptor kinase family, 
including  � ARK1 and  � ARK2.  � ARKs phosphorylate  � -
ARs in an agonist-occupancy dependent manner. When 
 � -ARs are stimulated by agonist, the dissociated G pro-
tein  �  �  subunits interact with  � ARKs via their pleckstrin-
homology domains, bringing the kinases within close 
proximity of the transmembrane  � -ARs ( fig.  2 ). Phos-
phorylation of  � -ARs by  � ARKs reduces the affinity of 

Table 1.  Changes in the �-AR/G protein/adenylyl cyclase signal 
transduction pathways associated with myocardial failure

Abnormality Extent of 
effect (0–3+)

Type of 
heart disease

�1-AR downregulation ++ IDC
+ ISCH

�1-AR uncoupling – IDC
+ ISCH

�2-AR uncoupling + IDC
++ ISCH

Decrease in G�s activity +/– IDC, ISCH
Increase in G�i activity ++ IDC, ISCH
Increased �ARK activity ++
Decrease in AC activity + IDC (RV only)

– ISCH

I DC = Idiopathic dilated cardiomyopathy; ISCH = ischemic 
heart disease; RV = right ventricle; �ARK = �-AR kinase. Modi-
fied from Bristow et al. [18].
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interaction of the receptor for the stimulatory G protein, 
Gs, and apparently increases the affinity of interaction for 
the inhibitory G protein, Gi  [22] . Furthermore, phosphor-
ylation leads to the interaction of  � -ARs with  � -arrestin 
adaptor proteins which facilitate the internalization of re-
ceptors into clathrin-coated pits and endosomic vesicles. 
These processes are involved in receptor resensitization/
reexpression and in receptor downregulation.  � ARKs are 
upregulated in heart failure and thus contribute to the de-
crease in  � -AR signal transduction  [23] .

  As stated above, the  �  1 - and  �  2 -AR signaling pathways 
are both coupled to stimulation adenylyl cyclases. How-
ever, the coupling efficiency of the two receptor subtypes 
is markedly different. In homogenates of human ventric-
ular myocardium, stimulation of the  �  2 -AR is several-
fold more efficiently coupled to the production of cAMP 
than is the  �  1 -AR  [2, 24] . Regardless, there appears to be 
a more direct relationship between total  � -AR density 
and myocardial contractility; that is to say,  �  2 -ARs do not 
appear to stimulate contractility more efficiently than  �  1 -
ARs. This finding argues strongly in favor of compart-
mentalization of intracellular cAMP pools. In this con-
text, in addition to apparent regional differences the lo-
calization of  �  1 - and  �  2 -AR subtypes, it is now well 
established that the intracellular localization of PK-A is 
highly specific based on its interaction with PK-A an-
choring proteins, or AKAPs  [25] . Thus,  � -AR subtypes 
and distal components of their signaling pathways ap-
pear to be discretely organized  [26] .

  The  � -AR stimulation can also lead to the downstream 
activation of members of the MAP kinase  [27, 28] , jun 
kinase and p38 kinase families  [29] , no doubt in a sub-
type-selective manner. These findings have significant 
implications for modulation of mitogenic and proapop-
totic actions of  � -AR pathways. In particular, it is becom-
ing increasingly clear that the  �  1 -AR and  �  2 -AR signaling 
pathways can be quite distinct  [30] . For example, the  �  1 -
AR appears to be coupled primarily to the Gs/adenylyl 
cyclase/PK-A pathway and to modulation of L-type Ca ++  
channels and phospholamban. In marked contrast, the 
 �  2 -AR is not only coupled to Gs/adenylyl cyclase/PK-A, 
but, importantly, also to the Gi pathway, and to ‘G pro-
tein-independent’ functions such as regulation of the 
Na + /H +  exchanger. 

  One of the more important ramifications of differen-
tial coupling of  � -AR subtypes to distinct signaling path-
ways, and in particular lack of  �  1 -AR coupling to the Gi, 
is the observation in cardiomyocytes that stimulation of 
the  �  1 -AR appears to be proapoptotic whereas stimula-
tion of the  �  2 -AR is not  [31] , an observation that has been 
extended to transgenic mouse models. Milano et al.  [32]  
demonstrated previously that cardiac-directed overex-
pression of the human  �  2 -AR in a transgenic mouse pro-
duced a significant increase in cardiac performance with 
limited, if any, histopathological consequences. Similarly, 
overexpression of a mini-peptide inhibitor of  � ARK pro-
duced a hyperdynamic mouse with no apparent histopa-
thology  [33] . In contrast, authors have described a trans-
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  Fig. 2.  In cardiomyocytes,  � -ARs ( � 1-,  � 2-
ARs) are coupled to the stimulatory G pro-
tein, Gs, which in turn activates AC caus-
ing the production of cAMP from ATP. 
The second messenger, cAMP, activates 
PK-A which phosphorylates a number of 
protein targets including  � -ARs, tran-
scription factors, L-type calcium chan-
nels, phospholamban (PLB) and elements 
of the contractile apparatus. (Other ab-
breviations: SR = sarcoplasmic reticu-
lum; PK-C = protein kinase C; MAP-
K = mitogen-activated protein kinases,
PIP 2  = phosphoinositide triphosphate; 
DAG = diacylglycerol).  
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genic mouse overexpressing the human  �  1 -AR in ven-
tricular myocardium  [34, 35] . The  �  1 -AR mouse, unlike 
the  �  2 -AR overexpressing mouse, demonstrates a time-
dependent reduction in myocardial contractility as well 
as marked myocyte hypertrophy, myofibrillar disarray 
and replacement fibrosis. Interestingly, the  �  1 -AR mouse 
demonstrates upregulation of proapoptotic proteins as 
well as direct evidence of apoptosis. In this regard, the 
 �  1 -AR mouse is more similar to transgenic mice overex-
pressing the stimulatory G protein, G � s  [36] , than it is to 
the  �  2 -AR mouse. Although the effect of  � -AR blockade 
has yet to be examined in  �  1 -AR overexpressing mice, it 
is clear that  � -blockade (propranolol) can prevent the 
myocardial damage produced by overexpression of G � s 
 [37] . Therefore, attenuation of G � s signaling, and pre-
sumably  �  1 -AR signaling, by  � -blockade, recapitulates 
the positive clinical experience of the use of  � -blockade 
to treat chronic congestive heart failure.

  Consequences of Adrenergic Activation in Heart 

Failure 

 In heart failure, sympathetic drive is selectively acti-
vated in several organ systems including the kidney, skel-
etal muscle and the heart. Increases in cardiac adrenergic 
activity result in marked increases in interstitial concen-
trations of norepinephrine within the failing human 
heart  [38] . As discussed above, one consequence of the 
exposure of cardiomyocytes to high concentrations of 
norepinephrine is an alteration in cardiac adrenergic re-
ceptor pharmacology  [39] . These changes decrease the 
sensitivity of cardiomyocytes to both endogenous and ex-
ogenous catecholamines. For example, there is a down-
ward and rightward shift in dobutamine dose response 
curves in patients with heart failure compared to subjects 
with normal left ventricular function  [40] . Maximal ex-
ercise workload as measured by peak VO 2  also falls in 
proportion to the loss of cardiac  � -receptors  [41] .

  Cardiomyocyte growth is modulated in part by  �  1 -, 
 �  2 - and  �  1 -adrenergic receptors. Increases in signal 
transduction through these receptor pathways in the fail-
ing heart thus can contribute to pathological remodeling. 
Activation of these three receptors also results in increas-
es in inotropic and chronotropic response. Myocardial 
energetics are adversely affected by these changes. Addi-
tionally, cardiac adrenergic receptor activation may pro-
mote dysrhythmias. 

  Another consequence of increased exposure of cardio-
myocytes to increased concentrations of norepinephrine 

is myocyte toxicity. In tissue culture systems there is both 
a time- and concentration-dependent relationship be-
tween norepinephrine exposure and cardiomyocyte 
death  [42] . The toxic effects of norepinephrine incuba-
tion can be partially blocked with the addition of a  � -
adrenergic receptor antagonist and completely prevented 
with the addition of both a  � - and  � -blocker to the cul-
ture media. Apoptosis of cardiomyocytes can be induced 
in tissue culture by norepinephrine. This effect appears 
to be mediated primarily through the  �  1 -AR. Clinical ex-
amples of toxic effects of increased cardiac adrenergic 
drive include the observation of significant left ventricu-
lar dysfunction after catastrophic brain injury. However, 
the most compelling clinical support for the cardiotoxic 
role of cardiac norepinephrine are the beneficial effects 
that occur with the use of  � -adrenergic receptor agonists 
in patients with heart failure.

  Pharmacology of  � -AR Antagonists 

  � -AR antagonists (or  � -blockers) are a heterogeneous 
group of pharmacologic agents. Some of the pharmaco-
logic actions that  � -blockers may possess include  �  1 - and 
 �  2 -AR antagonism,  intrinsic sympathomimetic activity 
(ISA), inverse agonism and guanine nucleotide-modulat-
able binding.  � -Blockers may also possess additional 
properties such as vasodilatation via  �  1 -AR antagonism. 
In addition, these agents have substantially different 
pharmacokinetics. The potential clinical importance of 
these differences will be discussed below. A summary of 
the pharmacologic profile of  � -blockers that have been 
evaluated in controlled clinical trials of heart failure is 
given in  table 2 .

  Nonselective versus Selective  � -Blockers 
 The first group of  � -blockers to be developed possess-

es equal affinities for the  �  1 - and  �  2 -AR and no other 
pharmacologic properties. Examples of these ‘first gen-
eration’  � -blockers include propranolol and timolol. Se-
lective  � -blockers generally possess a greater affinity for 
the  �  1 -AR. Examples of these ‘second generation’ agents 
include metoprolol and bisoprolol. While these agents 
were developed in the hope that they would be ‘cardiose-
lective’, such specific target organ actions have not been 
definitively demonstrated. 

  Intrinsic Sympathomimetic Activity 
  � -Blockers with ISA possess partial agonist activity. 

Administration of these agents results in a mild positive 
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agonist response; however, they also antagonize the ago-
nist effects of full agonists such as norepinephrine. Ex-
amples of these agents include xamoterol and celiprolol. 
When these agents were developed it was hoped that ISA 
would improve the tolerability of  � -blockers. However, 
these agents appear to have a neutral or even harmful ef-
fect on the natural history of heart failure and are cur-
rently not recommended. 

  Inverse Agonism 
 Inverse agonism is the ability of an antagonist to inac-

tivate active-state receptors. This occurs even in the ab-
sence of occupancy of the receptor by an agonist ( fig. 3 ). 
Compared with other  � -blockers, bucindolol appears to 
possess the least amount of inverse agonism. This has 
measureable clinical consequences. Data from 24-hour 
ambulatory electrocardiograms in subjects with heart 
failure demonstrate that bucindolol reduces mean and 
peak heart rate but does not reduce minimum heart rate. 
In contrast,  � -blockers that possess inverse agonism such 
as metoprolol and carvedilol reduce minimum, mean 
and peak heart rate. 

  Guanine Nucleotide-Modulatable Binding 
 Carvedilol and bucindolol possess the property of 

guanine nucleotide-modulatable binding. These agents 
result in a rightward shift of GppNHp competitive-bind-
ing curves in heart membrane preparations without pos-
sessing detectable agonist-like activity as detected by 
more conventional means  [43] .

  Vasodilator Activity 
 Several  � -blockers possess vasodilator activity via  �  1 -

AR antagonism. Examples of these ‘third generation’  � -
blockers include labetalol, carvedilol, bucindolol and 
nebivolol. Initially, vasodilator properties were incorpo-
rated with  � -blockade to increase the antihypertensive 
actions of these compounds. Theoretically, the addition 
of vasodilator activity may increase the ‘tolerability’ of 
nonselective  � -blockers in heart failure.  

Table 2.  Pharmacological effects of �-blockers studied in heart failure

Agent Selectivity ISA Inverse 
agonism

GNMB �1-AR 
blockade

Comments

Propranolol non no yes no no not tolerated, no long-term data
Metoprolol �1-AR1 no yes no no improved LV function, mortality benefit
Bisoprolol �1-AR no yes no no mortality benefit
Nebivolol �1-AR no yes no no improved LV function
Xamoterol non yes yes no no improved exercise, increased mortality
Celiprolol �1-AR yes2 yes no no no effect on LV function or mortality
Carvedilol non3 no yes yes yes improved LV function, mortality benefit
Bucindolol non no no yes yes4 improved LV function, morbidity benefit

G NMB = Guanine nucleotide-modulatable binding. 
1 At high doses metoprolol may lose its �1-selectivity. 
2 Celiprolol is a �2-agonist. 
3 Carvedilol is partially �1-selective, but is nonselective at doses ≥6.25 mg. 
4 Bucindolol is a much less potent �1-antagonist than carvedilol.

–1 0 +1

Full inverse
agonist

Neutral
antagonist

Full
agonist

R*RR*RR*R

Optimal activity of a
therapeutic �-blocker?

  Fig. 3.  Agents that bind to  � -ARs can range in activity from full 
agonists, e.g. (–)isoproterenol, to full antagonists or ‘inverse-ago-
nists’. Full agonists drive receptors to their active (R * ) G protein-
coupled state. Neutral antagonists have no effect on the normal 
distribution of R and R *  receptors. Inverse agonists actively drive 
receptors into the (R) uncoupled state.         
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  Other Pharmacologic Properties 
  � -blockers may also possess pharmacologic properties 

that are independent of their adrenergic effects. For ex-
ample, high concentrations of many  � -blockers produce 
quinidine-like (or ‘membrane stabilizing’) effects in 
model systems. It is doubtful that this action is significant 
at the usual clinical doses of these agents. Carvedilol and 
one of its metabolites have significant antioxidant prop-
erties. These properties have been demonstrated in mod-
el systems and in one study of normal human subjects 
 [44] . It is unknown if these antioxidant effects contribute 
to the clinical benefits that occur with carvedilol admin-
istration. 

  Pharmacokinetic Properties 
 There are significant differences in the pharmacologi-

cal half-lives between  � -blockers. Metoprolol, bucindolol 
and carvedilol must be administered twice daily for the 
treatment of heart failure. Bisoprolol and metoprolol suc-
cinate CR can be given once daily. Metoprolol, bucindo-
lol, carvedilol and nebivolol are all highly lipophilic com-
pounds that are extensively metabolized and cleared by 
the liver. Because of first-pass hepatic metabolism, these 
agents have a low bioavailability. Liver dysfunction, as ob-
served with right heart failure, will increase the relative 
potency of these agents; therefore, their doses must be 
decreased. Bisoprolol is less lipophilic and is cleared by 
both hepatic and renal routes. Either renal or hepatic dys-
function necessitates a reduction in dose with bisoprolol. 

  Effects of  � -Blocker Therapy in Heart Failure 

 Tolerability of  � -Blockers 
 Therapy of chronic heart failure with  � -blockers has 

distinct acute (pharmacologic) and chronic (biologic) ef-
fects. The pharmacologic effects are the consequence of 
the acute changes in function that occur with withdraw-
al of sympathetic agonism and include a decrease in heart 
rate and contractile state. These detrimental effects can 
be tolerated only by initiating therapy with very low dos-
es of  � -blocker and slow up-titration of the dose over sev-
eral weeks. There is significant variation in the severity 
of myocardial depression with different generations of  � -
blockers. Nonselective  � -blockers such as propranolol re-
duce the contractile state and increase systemic resistance 
which profoundly decreases cardiac output  [45] . As a 
consequence, the intolerance to initiation of propranolol 
is high ( ! 20%) and these agents have not been success-
fully used in long-term placebo-controlled trials. The ini-

tiation of  �  1 -AR-selective  � -blockers such as metoprolol 
and bisoprolol is much better tolerated by heart failure 
patients. This appears to occur because unblocked  �  2 -
ARs can support cardiac function either directly or indi-
rectly (by  �  2 -AR-mediated facilitation of sympathetic 
norepinephrine release). In addition, peripheral  �  2 -ARs 
can mediate vasodilatation. Thus, the overall detrimental 
effect upon organ perfusion is less severe than that ob-
served with first generation compounds.  �  1 -AR-selective 
 � -blockers have been utilized successfully in prospective 
trials in heart failure with a tolerability  1 80%. The third 
generation  � -blockers possess vasodilator properties 
which counteract the negative properties of adrenergic 
withdrawal. This permits a more comprehensive block-
ade of cardiac adrenergic pathways with high tolerability 
( 6 90% in clinical trials of carvedilol and bucindolol). 

  Effects of Long-Term Treatment 
 Phase II trials of  � -blockers, typically lasting 3–6 

months, demonstrated that  � -blocker treatment in heart 
failure results in improvements in right heart hemody-
namics, reversal of ventricular remodeling (as evidenced 
by reductions in left ventricular volumes, increases in 
right and left ventricular ejection fraction, decreases in 
left ventricular mass and favorable effects upon left ven-
tricular geometry), and improvements in heart failure 
symptoms  [46] . Prospective, randomized, placebo-con-
trolled outcome trials of carvedilol, bisoprolol and meto-
prolol succinate in heart failure have shown significant 
reductions in mortality and hospitalizations, as well as an 
improvement in patient well-being  [47–50] . Premature 
termination of these trials because of the superior effi-
cacy of these agents compared to placebo limited the du-
ration of post-trial follow-up to less than 18 months [US 
Carvedilol Trial 6 months (12 months in the mild heart 
failure group); CIBIS II 1.3 years; MERIT-HF 12 months; 
COPERNICUS 10.4 months].  However, a 12-year follow-
up of evaluating the long-term use of carvedilol demon-
strated sustained improvements in left ventricular re-
modeling and symptoms. Long-term survival was good, 
particularly in patients with a nonischemic etiology for 
their dilated cardiomyopathy  [51] . The clinical evidence 
for the long-term benefit of  � -blocker therapy is so strong 
that it is now recommended therapy in all patients with 
Class II or III heart failure symptoms who do not have 
specific contraindications. 

  To date, three specific  � -blockers have been shown to 
be effective in the treatment of heart failure: bisoprolol, 
sustained release metoprolol succinate and carvedilol. 
The first placebo-controlled multicentered trial, Meto-
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