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Drug Therapy in the Heart Transplant Recipient
Part IV: Drug–Drug Interactions

Robert L. Page II, PharmD; Geraldine G. Miller, MD; JoAnn Lindenfeld, MD

With improving survival, the heart transplant recipient faces
an increasing number of medical problems caused by both
aging and the cumulative complications of immunosuppres-
sive drugs.1 The availability of new drugs to treat infection,
obesity, hypertension, hyperlipidemia, renal insufficiency,
diabetes, osteoporosis, gout, and malignancies has resulted in
the heart transplant recipient and their physicians facing an
almost overwhelming number of important drug–drug inter-
actions. In parts 1 through 3 of this series, we reviewed
commonly used immunosuppressive drugs and their pharma-
cology, as well as the common medical problems faced by the
heart transplant recipient. In this article, we provide an
overview of the mechanisms of common and important
potential drug–drug interactions and guidelines for avoiding
these interactions.

Principles of Drug–Drug Interactions
The risk for drug–drug interactions is increased by ad-

vanced age, polypharmacy, medications with a narrow ther-
apeutic index, or medications requiring intensive monitoring.
All of these factors except advanced age are present in the
heart transplant recipient. A 10-fold interpatient variability
may exist in the magnitude of a drug interaction resulting
from patient-related and drug-related factors.2

Patient-related factors predisposing to drug interactions
include concomitant diseases, genetics, diet, and environmen-
tal exposures. For example, commonly used immunosuppres-
sants, antifungal agents, and lipid-lowering medications are
metabolized through the cytochrome P450 (CYP450) enzyme
system and effluxed from cells by the multiple drug resis-
tance transporter protein p-glycoprotein (P-gp). Both systems
are found in the liver and gastrointestinal tract and exhibit
genetic polymorphism.2 The CYP450 enzymes belong to a
superfamily of oxygenases; the primary purpose of these
oxygenases is to add a functional group to a drug to increase
its polarity and to promote its excretion from the body. If
enzymes possess �40% homology, they are grouped together
into families designated by an Arabic numeral (eg, the CYP1
family). Families are further divided into subfamilies, which

are designated by a letter after the number (eg, CYP2C and
CYP2D subfamilies); members of each subfamily have
�55% homology with each another. Individual members are
given an additional number (eg, CYP3A4) to identify a
specific enzyme pathway.2 CYP3A4 is particularly important
because 60% of oxidized drugs, including the calcineurin
inhibitors (CIs) cyclosporine (CSA) and tacrolimus (TAC),
sirolimus (SIR), and everolimus (EVER), undergo biotrans-
formation through this particular enzyme system.3

P-gp is a membrane-bound glycoprotein belonging to the
superfamily of ATP-binding cassette transporters. Like the
CYP450 enzyme system, P-gp acts in a protective capacity by
“effluxing” drug from the cell membrane or cytoplasm. P-gp
density is highest within the small intestine, proximal tubules
of the kidney, and biliary canalicular membranes. Some
medications such as CIs and SIR use both the CYP450
enzyme system and P-gp, making them especially susceptible
to drug interactions.4 Substrates, inhibitors, and inducers of
the CYP450 enzyme system and P-gp have been extensively
reviewed elsewhere.4

Drug-related variability may be dependent on dose, dura-
tion, sequence of administration, and timing of concomitant
medications.2 Drug interactions may be pharmacokinetic or
pharmacodynamic in nature. After oral administration, sev-
eral intricate elements are involved with the absorption of a
drug, all of which can be possible targets for drug–drug
interactions: intestinal delivery (gastric pH, gastric emptying,
and presence of food), intestinal luminal absorption (drug
dissolution, lipophilicity, and stability), active intestinal drug-
efflux pumps and metabolism (P-gp, CYP450 enzyme sys-
tem), and hepatic first-pass metabolism (phase I and II
metabolism)1 (Figure). Pharmacokinetic interactions involve
these alterations to the absorption, distribution, metabolism,
or elimination of a drug. Pharmacokinetic parameters com-
monly used to evaluate drug interactions are the area under
the curve (AUC), which reflects medication bioavailability,
and mean maximum blood concentrations for the dosing
interval (Cmax). Pharmacodynamic interactions occur when a
drug potentiates or diminishes the effect of another.5
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Using case reports, case series, package inserts, and in vivo
pharmacokinetic studies in these subjects, we provide a
clinically relevant list of the pharmacokinetic and dynamic
drug interactions with immunosuppressant medications (Ta-
ble 1). Interactions were selected on the basis of widespread
use of the interacting medication in the heart transplant
population and the potential for the interaction to cause an
adverse event defined as death, hospitalization, rejection,
therapeutic failure, and/or prolonged hospital stay. Table 2
defines criteria used to evaluate onset of action, magnitude of
effect, and strength of evidence for interactions discussed.6

Therapeutic Drug Monitoring
Monitoring of trough levels is standard with CI. Drug level
monitoring has not guided therapy in clinical trials of SIR or
mycophenolate mofetil (MMF), but some guidelines have
been suggested.7,8 The recommended frequency of monitor-
ing of immunosuppressive drug levels depends on several
factors, including the potential magnitude and clinical conse-
quences of the interaction and the timing of onset of the
interaction. Patients are most susceptible to rejection in the
first few months after transplantation or if they have had
frequent episodes of rejection; monitoring for a decrease in
immunosuppressive drug levels may need to be more fre-
quent in these patients.9 Overall, recommended monitoring of
drug levels may vary from 1 to 3 times per week for the first
week and occur less frequently in follow-up, depending on
these important patient factors and the magnitude and timing
of the interaction.

Calcineurin Inhibitors

CSA and TAC Interactions

Pharmacokinetic
More studies report drug interactions with CSA than with
TAC, in large part because of its earlier availability for
clinical use. Interactions reported for CSA are likely to be
present with TAC.

Oral CSA and TAC have incomplete, erratic absorption
with a large interpatient variability. Both agents are exten-
sively metabolized by hepatic and intestinal CYP3A and act
as both inhibitors and substrates for P-gp.10,11

Antihypertensives
Diltiazem and verapamil inhibit both CYP3A4 and P-gp,

increasing CSA and TAC concentrations by 1.5- to 6-fold and
thus requiring a 20% to 75% dose reduction in CSA and
TAC.10,12–19 Because many of the dihydropyridine calcium
channel blockers are substrates of CYP3A4 and inhibitors of
P-gp, potential interactions with CSA also exist. Amlodipine,
felodipine, and nicardipine can increase CSA concentrations
between 23% and 350%.20–26 Felodipine and nifedipine have
been documented to increase TAC levels by �50%.27,28

Although nifedipine and isradipine do not appear to affect
CSA pharmacokinetics, caution is still warranted when any of
the dihydropyridines with TAC or CSA are initiated or
discontinued.29,30

Lipid-Lowering Agents
Atorvastatin, simvastatin, and lovastatin are all substrates

for CYP3A4, predisposing them to pharmacokinetic interac-
tions with CSA and TAC, potentially leading to myotoxicity
(ie, myopathy and/or rhabdomyolysis).31 Fluvastatin is me-
tabolized primarily by CYP2C9 and pravastatin through
multiple pathways not completely involving the CYP enzyme
system. Atorvastatin, lovastatin, and pravastatin are also
substrates of P-gp.4 Rosuvastatin, which was recently ap-
proved, exhibits minimal metabolism via the CYP enzyme
system.32

Except for fluvastatin, all the statins have been associated
with rhabdomyolysis when used in combination with CSA.31

Although the mechanism remains unknown, the incidence of
myotoxicity increases with increasing statin dose.31,33 Lim-
ited information is available about rhabdomyolysis with TAC
and statins. In solid-organ transplant recipients, CSA com-
bined with lovastatin, simvastatin, fluvastatin, atorvastatin, or

Drug metabolism and countertransport
by P-gp. During absorption, drugs are
metabolized by intestinal cytochrome
P450. P-gp assists by pumping drug
back into intestinal lumen. Drugs that
evade intestinal metabolism enter portal
blood and are subject to further biotrans-
formation by hepatic cytochrome P450.
Most drugs undergo phase I metabolism
in which metabolites may be further con-
jugated or are directly eliminated by kid-
ney. Small group of drugs may undergo
phase II metabolism with no prior bio-
transformation. Modified with permission
from Reference 2.
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TABLE 1. Pharmacokinetic Interactions With Commonly Used Immunosuppressants

Drug Interaction Drug Effect Onset Magnitude
Level of
Evidence Management*

CSA†
TAC‡

Antihypertensives10,12–28 Monitor CSA/TAC levels 3 times a week for
first week; reduce CSA/TAC accordingly.
With diltiazem and verapamil, decrease
CSA/TAC dose by 20%–50%.

Diltiazem†‡ Increased TAC/CSA exposure; with TAC
subsequent neurological toxicity

Delayed II A (CSA)
C (TAC)

Verapamil† Increased TAC/CSA exposure Delayed II A
Amlodipine† Increased TAC/CSA exposure Delayed II D
Felodipine†‡ Increased TAC/CSA exposure Delayed II D (CSA)

D (TAC)
Nifedipine‡ Increased TAC exposure Delayed II D
Nicardipine† Increased TAC/CSA exposure Delayed II D

Lipid-lowering
agents31,34–41,46,49,50

Use lowest possible statin dose; consider
fluvastatin or pravastatin.

Atorvastatin† Increased statin exposure, increased risk
for myopathy/rhabdomyolysis

Delayed I C

Fluvastatin† Increased statin exposure, possible
increased risk for myopathy/rhabdomyolysis

Delayed I D

Lovastatin† Increased statin exposure, increased risk
for myopathy/rhabdomyolysis

Delayed I B

Pravastatin† Increased statin exposure, possible
increased risk for myopathy/rhabdomyolysis

Delayed I D

Rosuvastatin† Increased statin exposure, increased risk
for myopathy/rhabdomyolysis

? I D

Simvastatin† Increased statin exposure, increased risk
for myopathy/rhabdomyolysis

Delayed I B

Ezetimibe† Increased ezetimibe exposure ? III D Use lowest possible ezetimibe dose.
Gemfibrozil† Decreased CSA/TAC exposure Delayed II D Monitor CSA/TAC levels 2–3 times weekly

for first week, once weekly for the first
month, then periodically thereafter.

Fenofibrate† Decreased CSA/TAC exposure Delayed II D Monitor CSA/TAC levels 2–3 times weekly
for first week, once weekly for first
month, then periodically thereafter.

Antiplatelet agents51,52,54

Ticlopidine† Decreased CSA/TAC exposure Delayed II D Monitor CSA/TAC levels closely for
several months.

Clopidogrel† Decrease in active metabolite of clopidogrel ? II D Monitor for increased clotting.
Antifungal agents10,56–59

Azole antifungals
Clotrimazole

(trouches)‡
Increased CSA/TAC exposure Delayed II D Monitor CSA/TAC levels 2–3 times for

first week.
Fluconazole†‡ Increased CSA/TAC exposure Delayed II D (CSA)

D (TAC)
Monitor CSA/TAC levels 2–3 times for
first week.

Itraconazole†‡ Increased CSA/TAC exposure, subsequent
nephrotoxicity

Rapid II B (CSA)
B (TAC)

Monitor CSA/TAC levels 2–3 times for
first week; reduce initial dose of CSA/TAC
by 50%.

Ketoconazole†‡ Increased CSA/TAC exposure with
subsequent renal and hepatic toxicity,
glucose intolerance, gingival hyperplasia
with CSA

Rapid II B (CSA)
B (TAC)

Monitor CSA/TAC levels 2–3 times for
first week; reduce initial dose of CSA/TAC
by 50%.

Voriconazole†‡ Increased CSA/TAC exposure Rapid II C (CSA)
C (TAC)

Monitor TAC/CSA levels 2–3 times for
first week; reduce initial dose of CSA by
50% and TAC by 33%.

Other antifungal agents
Caspofungin†‡ Increased caspofungin exposure, with

subsequent hepatoxicity
Rapid II D (CSA)

D (TAC)
Avoid with CSA; with TAC, monitor TAC
levels and liver function tests closely.

Antidepressants60–65,67

Nefazodone†‡ Increased CSA/TAC exposure with
subsequent renal and hepatic toxicity; with
TAC also neurological toxicity

Delayed II B (CSA)
C (TAC)

Avoid combination; consider alternative
agent such as sertraline, mirtazapine,
paroxetine, citalopram, or venlafaxine.

Fluvoxamine† Increased CSA/TAC exposure Delayed II C Monitor CSA/TAC 2–3 times a week for
the first 2 weeks.

Fluoxetine† Increased CSA/TAC exposure Delayed II C Monitor CSA/TAC 2–3 times a week for
the first 2 weeks.

St. John’s Wort†‡ Decreased CSA/TAC exposure with
subsequent rejection with CSA

Delayed I C (CSA)
C (TAC)

Avoid combination.

Other agents68–75,77–79

Antiarrhythmics
Amiodarone† Increased CSA/TAC exposure Delayed II D Monitor CSA/TAC levels every 3 d for first

week, weekly for first month, then
periodically thereafter; use lowest possible
dose of CSA, TAC, and amiodarone.

continues
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rosuvastatin increased statin AUC by 3- to 20-fold compared
with baseline.34–41 Compared with other HMG CoA reduc-
tase inhibitors, pravastatin combined with CSA appears to
have minimal accumulation after multiple dosages.42,43 In the
liver and small intestine, the affinity of TAC for CYP3A is
comparable to that of lovastatin and simvastatin; therefore, a
potential interaction exists.44

When used in combination with CSA, the lowest dose
possible of lipid-lowering agent should be prescribed consistent
with package labeling and clinical trials.31,45 Although no formal
dosing recommendations have been made with TAC, the same
recommendation seems prudent. Fluvastatin or pravastatin may
be the safest of the statins in transplant recipients. Should
rhabdomyolysis occur, the statin, CSA, TAC, and other myo-
toxic agents should be discontinued immediately.31

In a single report, CSA increased ezetimibe concentrations
12-fold. Further evaluation of interactions of ezetimibe with
the CI is necessary before recommendations can be made.46

The fibric acid derivatives gemfibrozil and fenofibrate are
metabolized by CYP3A4 and excreted renally.47 Data dem-
onstrating potential drug interaction between gemfibrozil or
fenofibrate and CSA are conflicting.48 Studies suggest an
18% to 27% reduction in CSA trough levels with concomitant
fibric acid use.49,50 Although reports of myotoxicity with
CSA are few, the potential exists. The combination of statin
and a fibrate may result in myotoxicity; the risk is even
greater when a CI is added.31

Antiplatelet Agents
Ticlopidine (250 to 500 mg) may reduce CSA concentra-

tions by 1.4- to 2.0-fold over days to months as a result of
possible ticlopidine induction of CYP3A.51,52 Not all studies
have confirmed this interaction.53 Currently, no data with
TAC have been published. Nonetheless, CSA and TAC
concentrations should be monitored closely for several
months when ticlopidine is initiated or discontinued. Coad-
ministration with CSA or TAC may decrease the active

TABLE 1. Continued

Drug Interaction Drug Effect Onset Magnitude
Level of
Evidence Management*

Anticonvulsants Monitor TAC/CSA levels 2–3 times a
week for first 2 wk; consider alternative
agent such as valproic acid, gabapentin,
lamotrigine, tiagabine, vigabatrin.
Monitor bound and free phenytoin levels
closely, especially in combination with
TAC; increase CSA dose 2-fold before
beginning phenytoin.

Carbamazepine†‡ Decreased TAC/CSA exposure Delayed II D (CSA)
D (TAC)

Oxcarbazepine† Decreased TAC/CSA exposure Delayed II D
Phenytoin†‡ Decreased TAC/CSA exposure,

increased phenytoin concentrations
Delayed II C (CSA)

D (TAC)

SIR§
EVER�

Antihypertensives86 ,87

Diltiazem§ Increased SIR exposure Delayed II C Monitor SIR levels 3 times a week for
first week.

Antifungal agents 87–89

Fluconazole§ Increased SIR/EVER exposure Delayed II D Monitor SIR levels for 1–2 weeks.
Itraconazole§, � Increased SIR/EVER exposure Delayed II C (SIR)

C (EVER)
Monitor SIR levels for 1–2 weeks.

Ketoconazole§ Increased SIR/EVER exposure Delayed II C Avoid combination.
Voriconazole§ Increased SIR/EVER exposure Delayed II C Avoid combination.

Other agents90–92

CSA§� Increased SIR/EVER exposure Rapid II B (SIR)
C (EVER)

Administer SIR 4 h after CSA.

MMF Lipid-lowering agents98

Cholestyramine Decreased MPA exposure Rapid II D Avoid concomitant use.
Other agents99,100,101–106

CSA Decreased MPA exposure Delayed II C Monitor MPA levels (controversial).
TAC Decreased MPA exposure Delayed II C Monitor MPA levels (controversial) and s/s

of MMF toxicity.
Iron/antacids Decreased MPA exposure Rapid II C Stagger MMF and iron/antacid

preparations by 2–4 h.

Azathioprine Antigout agents108

Allopurinol Increased exposure to 6-MP with
subsequent anemia, leukopenia,
thrombocytopenia

Delayed I A Decrease AZA dose by 75%–80%.

Other agents109–111

Warfarin Decreased INR/PT Delayed II D INR/PT should be monitored at least 2
times weekly for first week.

AZA indicates azathioprine; PT, protime; INR, international normalized ratio; and s/s, signs and symptoms.
*The frequency in obtaining immunosuppressant concentrations may vary, depending on patient’s clinical stability, time from transplantation, or rejection history.
†Reported with CSA; ‡reported with TAC; §reported with SIR; �reported with EVER.
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metabolite of clopidogrel, leading to a theoretical reduction in
antiplatelet effect.54

Antifungal Agents
Ketoconazole, itraconazole, fluconazole, and voriconazole

all inhibit CYP3A. Both ketoconazole and itraconazole also
inhibit P-gp. In vitro, ketoconazole is the most potent inhib-
itor of CSA metabolism, followed by itraconazole and flu-
conazole.55 Ketoconazole, itraconazole, voriconazole, and
fluconizole (in doses �200 mg) can increase CSA and TAC
trough concentrations by �2-fold.10,56,57 With ketoconazole
and itraconazole, CSA and TAC dose should be reduced
initially by 50%. Specifically with voriconazole, CSA dose
should be reduced by 50% and TAC dose by �33%.58

CSA may increase the caspofungin AUC by 35%, resulting
in transient but clinically significant increases in liver
transaminases. Currently, package labeling recommends that
caspofungin not be given with CSA; however, a single-center
study found that the concurrent use of caspofungin and CSA
had no attributable adverse effects.58,59 In a phase 1 study,
caspofungin reduced TAC AUC by 20%, Cmax by 16%, and
12-hour blood concentration by 26%, with a small transient
increase in alanine transaminase.58 TAC should be closely

monitored when caspofungin is coadministered, and TAC
dose should be adjusted accordingly.58,59

Antidepressants
Nefazodone, fluvoxamine, and fluoxetine are potent inhib-

itors of CYP3A4 and may increase CSA concentrations
between 2- and 10-fold.60–62 Only nefazodone has been
reported to increase TAC concentrations �2- to 5-fold;
however, a similar effect would be expected with fluvoxam-
ine and fluoxetine.63,64 Sertraline, mirtazapine, and paroxetine
are weak inhibitors of CYP3A4; citalopram, a substrate for
CYP3A4, and venlafaxine, a substrate and inhibitor of
CYP2D6, may be potential alternatives.65 With numerous
antidepressants available, nefazodone should be avoided in
patients receiving CSA and TAC. Because of the lack of data,
fluoxetine and fluvoxamine should be used with caution
when combined with CSA or TAC.

In animal and in vitro studies, St. John’s Wort may increase
the expression of intestinal P-gp by 3.8-fold and may have a
similar effect on CYP3A4.66 Case reports have documented a 2-
to 6-fold reduction in CSA and TAC concentrations in transplant
recipients, leading to possible organ rejection.67 On the basis of
these data and the questionable efficacy of St. John’s Wort, this

TABLE 2. Definitions of Onset of Action, Magnitude of Effect, and Relative Strength of Evidence for Immunosuppressant
Drug Interactions6

Onset of action

Rapid PCK effect is demonstrated within 24 h of coadministration.

Delayed PCK effect will not be demonstrated until interacting drug is administered for days or weeks.

Magnitude of effect

Major (I) Effects that are life threatening or capable of permanent damage, rejection

Moderate (II) May cause a detriment in clinical status, additional treatment, hospitalization, or extension of stay

Minor (III) Effects may be mild, consequences may be bothersome or noticeable; additional treatment not required; no sign of effect on
therapeutic outcomes

Relative strength of evidence

Established (A) Proven to occur in well-controlled studies. Altered pharmacological effect has been demonstrated in well-controlled trials.

or

PCK effect has been demonstrated in well-controlled human studies. Altered pharmacological response is expected from
magnitude of kinetic effect or because clinical observations support occurrence of the interaction.

Probable (B) Very likely, but not proven clinically. A PCK interaction has been demonstrated in well-controlled studies (Based on
magnitude of kinetic changes and known plasma level–response relationship of the affected drug, an altered
pharmacological response will probably occur).

or

When controlled human experimentation is impractical, well-designed animal experiments confirm an interaction that is
suggested by multiple case reports or uncontrolled studies

Suspected (C) May occur, some good data but needs further study. A PCK interaction has been demonstrated in well-controlled studies.
Although an altered pharmacological response might be expected from magnitude of kinetic change, no firm conclusion can
be drawn because a plasma level–response relationship has not been established for the affected drug.

or

An altered pharmacological response has been reported in multiple case reports or repeated uncontrolled clinical studies.

Possible (D) Could occur, but data are very limited. Although a PCK interaction has been demonstrated, the kinetic changes are of such
magnitude that it is not possible to predict whether an altered response will occur; the evidence is divided as to whether an
interaction exists.

or

An altered pharmacological response is suggested by limited data.

PCK indicates pharmacokinetic.
© 2004 by Facts and Comparisons. Used with permission from Drug Interaction Facts.6 2004 ed. St Louis, Mo: Facts and Comparisons, a Wolters Kluwer Company.
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agent should be avoided.

Other Agents
Amiodarone, CSA, and TAC are all substrates for and

inhibitors of P-gp. Amiodarone, CSA, and TAC are also
substrates for CYP3A4; however, only amiodarone is consid-
ered a CYP3A4 inhibitor.4 Therefore, the possibility for
simultaneous accumulation and increased toxicity for CI and
amiodarone exists. In a heart transplant recipient, a 50%
reduction in CSA clearance with a subsequent 1.8-fold
increase in trough concentrations was demonstrated with
concomitant amiodarone.68 Another report found a doubling
of CSA concentrations within 3 days of initiation of amiod-
arone.69 This effect of amiodarone on CSA pharmacokinetics
may last �4 weeks after amiodarone therapy is discontin-
ued.70 No data exist for amiodarone and TAC, but a similar
interaction likely is present. When amiodarone is added to a
CI, the lowest possible dose of amiodarone should be used,
and CI levels should be monitored carefully for �4 weeks.

Oral phenytoin may significantly reduce CSA Cmax, mean
elimination half-life, and AUC.71 Although not fully studied,
the same effect would be expected with TAC.72 This inter-
action may be due to CYP3A induction and/or possible
interference with CSA absorption. It has been suggested that
substitution of intravenous for oral CSA might prevent this
interaction.73 However, in a pediatric bone marrow transplant
recipient, changing from an oral to an intravenous formation
did not improve CSA concentrations.74 Elevated phenytoin
concentrations have been reported with concomitant use of
phenytoin and TAC, possibly because of phenytoin protein
displacement by TAC.72,75 Because both TAC and CSA are
highly protein bound, the same effect should occur with CSA.
When phenytoin is initiated or discontinued, TAC or CSA
concentrations should be monitored closely for the first 2
weeks. A 2-fold increase in CSA dose should be made before
initiation of phenytoin.76

Carbamazepine, a potent inducer of the CYP enzyme
system, may reduce CSA levels by �4-fold. CSA levels may
not return to baseline for up to 4 months after carbamazepine
is discontinued.77 The same effect should be expected with
oxcarbazepine.78 Although not reported, reductions in TAC
concentrations should also be anticipated.79 Alternative anti-
epileptics that do not inhibit the CYP3A system are valproic
acid, gabapentin, lamotrigine, tiagabine, and vigabatrin.78

Pharmacodynamic

Antigout Agents
A combination of side effects consisting of gastrointestinal

dysfunction, hepatonephropathy, and neuromyopathy may be
induced by combining colchicine with CSA. This syndrome
appears within 1 to 2 weeks of initiation of colchicine (0.6 to
3.6 mg/d) and resolves within 3 to 4 weeks of discontinuing
colchicine and/or reducing the CSA dose. Patients with renal
dysfunction appear to be particularly susceptible.80 It has
been postulated that CSA may potentate the toxic effects of
colchicine by inhibiting P-gp thereby reducing the renal,
hepatic, and biliary clearance and efflux of colchicine and its
metabolites from cardiac and skeletal muscle. Therefore,
colchicine should be used briefly and in the lowest possible
dose with CI. Patients should be carefully monitored for signs

of nausea, vomiting, jaundice, muscle weakness, muscle
wasting, myalgias, and distal paresthesias.80 If any of these
symptoms arise, colchicine should be immediately
discontinued.

Other Agents
Additive nephrotoxicity has been noted when trimethoprim

sulfamethoxazole, trimethoprim, amphotericin B, aminogly-
cosides, foscarnet, nonsteroidal anti-inflammatory agents, or
ACE inhibitors were added to CSA or TAC.81–83

Target of Rapamycin Inhibitors

SIR/EVER Interactions

Pharmacokinetic
SIR and EVER are macrolide immunosuppressants. EVER
was recently approved for use in heart transplant recipients.
Although it is related to SIR, it is structurally different.84 Both
SIR and EVER are rapidly absorbed after oral administration;
however, SIR exhibits a low oral bioavailability (14%)
because of its extensive intestinal and hepatic metabolism by
CYP3A4 and countertransport by intestinal P-gp.85 Few drug
interactions with SIR or EVER have been published because
of their recent introduction into clinical use. However, inter-
actions similar to those of CSA and TAC or of greater
magnitude are likely with SIR and EVER.

Antihypertensives
In a pharmacokinetic study of healthy subjects, oral dilti-

azem (120-mg single dose) increased mean SIR Cmax and
AUC by 43% and 60%, respectively. This increase in SIR
bioavailability may be due to inhibition of CYP3A4 and P-gp
by diltiazem.4,86 Observations from multicenter efficacy trials
found no effect of potential CYP3A4 inhibitors such as the
dihydropyridines, diltiazem, or verapamil on EVER
concentrations.87

Antifungal Agents
The commonly used azole antifungal agents should be used

carefully in combination with SIR or EVER. In healthy
volunteers, ketoconazole increased SIR AUC and Cmax by
11- and 4.4-fold, respectively.88 In a cadaveric renal trans-
plant patient, oral fluconazole increased SIR trough concen-
trations 3.5-fold.89 Package labeling recommends not admin-
istering SIR with ketoconazole or voriconazole.90

Itraconazole may decrease EVER clearance by 71%.87

Other Agents
The administration time of CSA with SIR may affect SIR

pharmacokinetics. In a study of stable renal transplant pa-
tients receiving SIR, CSA, and prednisolone for �3 months,
the AUC, Cmax, and trough concentrations of SIR were
higher when the drugs were given concomitantly compared
with administration of SIR 4 hours later (459�207 versus
317�149 ng · mL�1 · h�1, P�0.001; 43.8�20.6 versus
25.5�14.2 ng/mL, P�0.002; 13.1�7.1 versus 8.9�4.4 ng/
mL, P�0.001, respectively). This effect was attributed to
inhibition of first-pass metabolism, CYP3A4, and/or P-gp or
improvement in SIR gut dispersion by CSA.91 Package
labeling recommends that SIR be administered 4 hours after
CSA.90 Coadministration of the modified CSA formulation
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significantly increased EVER Cmax by 82% (P�0.0001) and
average AUC by 168% (P�0001). With the oil-based CSA
formulation, minor effects on EVER AUC (6%, P�0.59) and
moderate effects on Cmax (74%, P�0.0001) were seen.92

Although the precise mechanism remains unknown, close
therapeutic monitoring of EVER concentrations within the
first 1 to 2 weeks of the addition or removal of either
formulation of CSA is required.

Pharmacodynamic
SIR and EVER may cause dose-dependent hyperlipidemia
and hypertriglyceridemia, especially if combined with CSA
and/or corticosteroids.93,94 Management may include dietary
restrictions, corticosteroid or SIR dose reduction, or treatment
with an HMG CoA reductase inhibitor.95 Because of its lack
of CYP3A inhibition, pravastatin may be a safer option.
Because the combination of a target of rapamycin inhibitor
and a CI may increase the risk of nephrotoxicity, lower doses
of the CI may be warranted.96

Antiproliferative Agents

MMF Interactions

Pharmacokinetic
MMF is rapidly absorbed after oral administration and
undergoes complete metabolism to its active metabolite
mycophenolic acid (MPA) by hepatic esterases. MPA is
subsequently metabolized by primarily glucuronyl transferase
to form the phenolic glucuronide of MPA (MPAG), which is
devoid of pharmacological activity. Both MPAG and MMF
are excreted by glomerular filtration and active tubular
secretion. MPAG is also excreted into bile and may be
deconjugated back to MPA by colonic bacteria, resulting in a
secondary MPA peak 6 to 8 hours after the dose.97

Lipid-Lowering Agents
Cholestyramine may decrease MPA AUC by 40%. This

decrease is probably due to binding of recirculating MPAG
by cholestyramine, preventing enterohepatic circulation of
MPA and loss of the secondary MPA peak. Package labeling
recommends that MMF and cholestyramine not be
coadministered.98

Other Agents
The absorption of MMF may be impaired by antacids or

iron preparations because of possible chelation complex
formation. When MMF is administered with antacids or iron
preparations, MPA AUC and Cmax are reduced by 16.8% to
89.7% and 37.7% to 93.5%, respectively.99,100 Therefore,
doses of MMF and iron and/or antacid preparations should be
staggered by 2 to 4 hours.

Although controversial, studies in renal transplant recipi-
ents receiving MMF and TAC exhibit a 1.8- to 2.3-fold
increase in MPA trough concentrations and a 1.6-fold in-
crease in MPA AUC.101–104 Studies with CSA and MMF are
variable, suggesting possible 2-fold increases or decreases in
MPA trough concentrations.105,106

Azathioprine Interactions

Pharmacokinetic
Azathioprine, a thiopurine analog, is rapidly converted non-
enzymatically into 6-mercaptopurine (6-MP), which in turn is

converted into the active moiety 6-thioguanine nucleotide by
the hypoxanthine phosphoribosyl–transferase pathway. Xan-
thine oxidase and thiopurine methyltransferase metabolize
6-MP into the inactive metabolites 6-thiouric acid and
6-methylmercaptopurine, respectively. The myelosuppres-
sion associated with azathioprine appears to be directly
related to increased red blood cell levels of 6-thioguanine.107

Antigout Agents
Allopurinol and its active metabolite oxypurinol both

inhibit intestinal and hepatic xanthine oxidase, leading to
increased bioavailability and accumulation of 6-MP.108 Sev-
eral case reports have documented reversible anemia, leuko-
penia, and thrombocytopenia when oral azathioprine and
allopurinol were given simultaneously.108 No interaction with
intravenous azathioprine has been reported. The oral dosage
of azathioprine and allopurinol should be reduced by 75% to
80% when given together, and complete blood count should
be closely monitored.108

Other Agents
In doses �100 mg, azathioprine may induce a resistance to

warfarin anticoagulation. Cases have reported a 1.5- to 2.5-fold
increase in initial weekly warfarin requirements to maintain
adequate anticoagulation. Animal studies suggest an increase in
prothrombin synthesis or activation by 6-MP. The concomitant
use of these drugs should be accompanied by close monitoring
of the protime.109–111

Pharmacodynamic

Antihypertensives
Anemia, leukopenia, neutropenia, and agranulocytosis may

occur when ACE inhibitors are combined with immunosup-
pressive drugs.112,113 Although the mechanism of this effect is
unknown, hemoglobin, hematocrit, platelets, and white cell
counts should be monitored every 2 to 3 weeks.

Predicting drug–drug interactions in a transplant recipient
is often difficult. These patients are taking a large number of
immunosuppressive and nonimmunosuppressive drugs with
substantial potential for clinically significant adverse events
as a result of drug–drug interactions. The guidelines provided
here should help to predict and prevent these adverse events.
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